tation, Usabilit

► Lecture Outline

- Application areas for 3D UI's
- Challenges for 3D UI's
 - Input
 - Output
- Guidelines for 3D UI's
- General observations
- Summary & outlook

► 3D Window Managers

Desktop Manage applications,

► 3D UI in CAD

- Desktop
- Content creation
- Need to support many operations

► 3D UI in VR/AR

- Goal: immersion
- Often non-desktop
- Mostly static scenes

► Challenges

- 3 main categories
 - Input
 - Output
 - Human Issues

▶ Input

- Desktop 3D devices (Spaceball, Phantom, ..)
 Very sensitive, limited motion, desk clutter
- Free-space 3D devices
 - Hand jitter, fatigue, lack of precision
 - OK for movements, not for pointing
 - Gesture recognition not reliable
 Acceptable for head tracking
- Game controllers
- Very limited DOF, ~ for pointing

► Output - Displays

Stereo

- Glasses dark, can't see others
- Autostereo neck strain
- HMD's neck strain, can't see others
- 3D displays
 - Seeing front and back of object simultaneously?
- Field of view
 - Spatial navigation OK with natural fov: 110°
 - Monitors and HMDs: only 30-40°

Output – 3D Graphics

- 3D graphics hardware
 3D text is *significantly* less readable
 - Perspective distortion
 - Anti-aliasing = blurring
 - Limited by pixel resolution
- Hence, less information density in 3D!
 - Critical for business apps
 Icons not an alternative

Human Issues 1

- Humans not naturally good at full 3D
 Astronauts, divers, fighter pilots ...
 - Extensive training
 - Aid: scaffolding (sculptor, builder, ...) or connections (plumber, ...)
- No "natural" mapping for full 3D rotations
 - Except bimanual operation
 Needs tracking of hands and *fingers*
 With high precision and haptic feedback

► Human Issues 2

- People interact only with visible objects
 Strong preference
- Depth perception not that accurate

- Navigation
 - 3D spatial memory not much better than 2D
 Easier/faster to teleport/search
 Google Earth

► Human Issues 3

Latency/lag

Latency detrimental on performance
 Jitter in latency much worse

UI very often thin layer above math

Noise not good either
 Smoothing introduces latency!

User Interface Mappings

E.g. handles, wireframe, ortho view, etc.
Most humans don't understand these easily

► How to Fix?

Sources of inspiration

User studies
 Observe novices

 No bias!

- Use known results from
 - Perception (stereo, hand-eye coord., ...)
 - Kinesiology
 - VR/AR research
 - 2D UI
 - 3D games

► My Take On 3D Interaction

- Students: T. Salzman, G. Smith, J.-Y. Oh, R. Teather, ...
- The big picture
 - 2D > Smart 3D > Full 3D
 - Full 3D: standard 3D tracker
 - Smart 3D: intelligent use of 3D tracker
 - 2D: mouse, tablet
 - Not that surprising, but few verifications

► Guidelines for Smart 3D UI's

Help for designers

- Some well known in various communities
 Add theoretical/experimental underpinning
- Also, directions for future work
- Note: these are guidelines

 - But many successful systems are here to them

► Guidelines - Objects

1. Contact assumption

- Floating objects exception in real world
 - But often default in 3D UI's
 - Training necessary to deal with floating objects!

2. Objects should not interpenetrate each other

- Confusing visual display, can't manipulate, …
 - Real-time collision avoidance easy
 - Enables also sliding contact [Kitamura97]

Guidelines - Select & Display

- 3. Interact only with *visible* objects
 - Users navigate for occluded objects [Ware97]2D view manifold
 - Ray-casting [Poup98,Bowman99]
 3D selection with 2D devices
- 4. Perspective & occlusion strongest depth cues [Wickens & Hollands 2000]
 - With no floating objects, these 2 sufficient to judge 3D pos!
 - Stereo not really necessary

Guidelines - Position & Rotate

- 5. Entire area of visual overlap for object positioning
 - Not only "cursor" position
 - Area based techniques better
 Perceptual evidence
 [VIDEO]

- 6. Full 3D Rotations not always required
 - Objects in contact are constrained
 Simpler UI

► Guidelines - Input & Cognition

- 7. 2D devices more precise/less latency than 3D/6D
 - Resolution 10-100 times better
 - Latency 40-50ms more than mouse
 - Latency and jitter matter a lot [Teather]
 Surprisingly, effect of hand support matters less
- 8. 2D/2.5D tasks cognitively simpler than 3D
 - Almost all real world tasks are 2D or 2.5D

► Guidelines – General & Navigation

9. Simulate reality only if necessary

- Bad if objects fall down & roll under table"Stacks" are important
- Manipulate base obj for whole stack, ... [SESAME]
 [VIDEO]

10. Navigation is rarely 6DOF

- Walking=2.5+2DOF 0.5 is jump/crouch
- Flying=2+2DOF inertia makes it simpler
- Full 6DOF only with training!

Summary: Two "Worlds" 2D & Constrained 3D Most human tasks Lots of experience Common in VR/AR Polygonal models Ul can be simplified Easy to use Needs complex UI Training necessary Polygonal models Training necessary

► Conclusions

 Choose right approach for domain
 E.g. Personal Interaction Panel vs. gloves

My goal: 3D UI's close to 2D performance
 Similar ease-of-use, ease-of-learning

• Will greatly enhance adoption of 3D UI's