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ABSTRACT
Lassoing objects is a basic function in illustration software
and presentation tools. Yet, for many common object arrange-
ments lassoing is sometimes time-consuming to perform and
requires precise pen operation. In this work, we studied las-
soing movements in a grid of objects similar to icons. We
propose a quantitative model to predict the time to lasso such
objects depending on the margins between icons, their sizes,
and layout, which all affect the number of stopping and cross-
ing movements. Results of two experiments showed that our
models predict fully and partially constrained movements
with high accuracy. We also analyzed the speed profiles and
pen stroke trajectories and identified deeper insights into
user behaviors, such as that an unconstrained area can induce
higher movement speeds even in preceding path segments.
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Figure 1: Different stroke constraints for lassoing move-
ments. The target group in yellow needs to be selected by
passing through the white areas. Illustration of a (a) fully
constrained, (b) partially constrained, and (c) unconstrained
stroke. Here we target conditions (a) and (b). The lasso crite-
rion here is the same as Figure 3d.

1 INTRODUCTION
Selecting multiple objects is a basic operation in graphical
user interface (GUI) applications, such as presentation tools
and illustration software. Widely used methods for selecting
object groups include individually tapping the intended items
(while holding a modifier key down) or drawing a selection
stroke to include the intended icon group in the correspond-
ing rectangle. Another common way is lassoing – a continu-
ous stroke around the intended items, as shown in Figure 1.
As lassoing can be time-consuming, especially for spatially
large icon groups [7], researchers have experimented with
improvements, such as automatically connecting the start
and end points [25] and considering the likelihood of objects
belonging to the same group to facilitate selection [9].

To develop novel techniques for such a task, it is important
to establish a baseline model. For example, new mouse point-
ing techniques that reduce the movement distance (A) and/or
increase the target size (W ) have been proposed [15, 16]
based on Fitts’ law [12]. With a robust model, the effective-
ness of a new technique can then be predicted, which lessens
the need to conduct user studies. However, there is little
work on modeling operation times for lassoing movements
for given task parameters. For example, when the icon size
and margins are both 150% larger than the default condition
of Figure 1a, how does the task completion time change?

Building on existing motor performance models we derive
here a model to predict movement times for lassoing tasks for
conditions where the objects to be selected are square-shaped
and arranged in a grid. Because we are interested in establish-
ing a baseline model, we ignore supporting lasso techniques,
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such as auto-closing the stroke, and focus our work on lay-
outs with a grid of icons. Lassoing completely unconstrained
icon groups (Figure 1c) has been investigated before [13, 36].
Thus, we focus on fully- or partially-constrained conditions
(Figure 1a and b). Our contributions include:

• Model development based on existing performance
models. We present a model to predict a movement time
for a lassoing task parameterized by the margin between
icons (or path widthW ), icon size (S), and layouts of icons
that affect the number of corners and lengths of straight
path segments.

• Validation of candidatemodels via two experiments.
The results of two experiments show a high model fitness
for fully- and partially-constrained conditions through
adjusted R2 and AIC [5]. Our work demonstrates that op-
eration times can be estimated by summing each difficulty
by careful segmentation of required motions, even for a
complex object lassoing task.

• Analyses of speed profiles and trajectories to deepen
understanding of user behaviors. We also illustrate
that for the same movement distance and path width, the
layout can significantly affect performance. Our speed
profile and pen trajectory analysis reveals that users con-
sistently change their movement behavior to anticipate
future corners and “gates” to be entered.

2 RELATEDWORK
Selection Methods for Multiple Objects
Clicks on target objects and rectangle selection are frequently
supported mechanisms to select multiple objects. For exam-
ple, in Windows, holding the Ctrl-key down and clicking
on intended objects adds them to the group. Tapping on se-
lected item removes them from the group. A (diagonal) stroke
through a group is usually mapped to rectangle selection,
which selects all objects within the rectangle’s area.

Brushing, a one-dimensional selection technique, is an-
other way to select multiple items; users make a stroke that
passes through the intended items. To avoid inadvertent se-
lection of items that are just touched by the stroke, smart
algorithms adjust the selection [38], but this approach is not
always easy to understand for users [7].
A lassoing tool, also called free selection in drawing soft-

ware (e.g., Gimp), is efficient for selecting a complex-shaped
group with many items. For small groups, just clicking on
each item is faster than making a stroke around. Also, the
combination of rectangle selection with a few additional taps
(adding or removing some objects) can be efficient [33].

The baseline performance of lasso operations has been
measured, typically in comparisons with novel techniques
[7–9, 25, 38]. Yet, no general model exists for lassoing per-
formance, even for simple task, such as in a grid of icons.

Figure 2: Continuous crossing tasks [4, 6].

Bjerre et al. proposed a model linear in the number of las-
soed icons [7], which is overly simplistic. Their result can
be explained by their choice of target groups. Also, their
work does not take different icon sizes, number of corners,
or free areas into account. Thus, the effects of such task
characteristics on lassoing are unexplored.

Performance Models for GUI Operations
Pointing Model. Fitts’ law [12] in the Shannon formulation

[24, 32] predicts movement time for aiming tasks:

MT = ap + bp IDp , IDp = log2 (A/W + 1) (1)

where MT is the time to point to a target, A is the distance,
W is the size of the target, and ap and bp are empirically
determined constants. The logarithmic term is called the
index of difficulty of pointing (IDp ).

Selecting multiple items by tapping is accurately modeled
by adding multiple Fitts’ law terms [18]. Thus, the time for
adding (or deleting) individual items to (from) a group after
a lasso selection is easily predicted.

Crossing Model. A crossing operation, as shown in Fig-
ure 2, is alsowell modeled by Fitts’ law [4, 6]: passing through
a line of length W at a distance A is modeled by: MT =
ac + bc IDc , where IDc = log2(A/W + 1) and ac and bc are
crossing regression constants. Targets both collinear and
perpendicular to the movement direction, see Figure 2a and
b, are supported, with slightly different ac and bc ’s [4, 6].
This model also predict the time to enter a “gate” between
obstacles around a path [41, 42]. We similarly assume that
moving the pen from an unconstrained into a constrained
area during lassoing is modeled by the crossing law, through
a term that describes the task geometry for such a transition.

Steering Model. Models for steering through a constrained
path have been proposed for car driving [30] and pen draw-
ing [11]. For GUI operations, Accot and Zhai [1] proposed a
global model to steer through a path (or tunnel) T :

MT = as + bs IDs , IDs =

∫
T

dx

W (x) (2)

where x is the cursor position,W (x) is the path tolerance
width at x , and as and bs are empirically determined steering
constants. The integral term is called the steering index of
difficulty IDs . If the width is constant throughout the path,
the model simplifies toMT = as + bs (A/W ), where A is the



path length, andW the path width. This relationship holds
for various devices [2] and movement angles [34, 35].

Model of Steering with Cornering. Here, we discuss several
models that model a part of lasso movements. First, an entire
lassoing motion could be directly modeled by the global
steering model (Equation 2). That is, if the path and its width
at every point are known then the MT could be predicted.
However, previous work found evidence to the contrary.
Pastel’s work on steering tasks with a corner [29] shows

that users decelerate when approaching the corner, stop
there, and then accelerate in the second path segment. As
the steering model assumes a continuous movement with
speed linearly related to the path widthW [1, 11, 17], such a
stop-and-go motion is not modeled well. Pastel thus regarded
this stop as a pointing motion, and modeled as follows:

MT = a + bs
A

W
+ bp log2

(
A/2
W
+ 1

)
(3)

where A is the total path length, andW the path width. The
total movement time is then the sum of the times estimated
by the global steering model and a Fitts’ law term for stop-
ping at the corner. As there is only a single corner between
two path segments of the same length, the constant a in-
cludes both intercepts for steering (as ) and pointing (ap ).
Also, because there are two steering motions, the intercept
of as is a merged value of as ×2. Thus, we rewrite Equation 3:

MT =

[
as + bs

A1

W

]
+

[
ap + bp log2

(
A1

W
+ 1

)]
+

[
as + bs

A2

W

]
(4)

where A1 and A2 are lengths of the first and second path
segments, and the terms model the first steering, middle
pointing, and final steering task, respectively.

Model of Steering followed by Pointing. When users select
an item in a hierarchical menu, they steer through a parent
menu and then click on the intended command in the child
menus. Such an operation is called a targeted steering motion
[20, 21], which has been modeled several times [10, 21, 31].
Dennerlein et al.’s model uses IDs and IDp and merges as
and ap into a parameter a:MT = a+bs (IDs )+bp (IDp ), which
showed an excellent fit, R2 > 0.98. To reduce the number of
parameters Kulikov and Stuerzlinger [21] further combined
the IDs and IDp terms, MT = a + b(IDs + IDp ), but model
fitness decreased because the slopes of steering and pointing
(bs and bp ) are different [31]. Senanayake et al. proposed to
separate steering and pointing phases [31], but found that
Dennerlein et al.’s model still fitted the data well, too.

Model of Sequential Steering Tasks. Yamanaka et al. showed
that steering through two sequential path segments is accu-
rately predicted by the global steering model [41]. Entering
the second path segment is well described as a crossing task.

Figure 3: Inclusion criteria for objects in a lasso. Yellow icons
are selected by the green stroke. (a) Objects fully inside or
crossed by the stroke, (b) objects whose center is inside [25],
(c) objects whose entire area is inside, and (d) objects whose
entire area is inside of a stroke that passes only through
empty areas. Here we use the last criterion.

For lasso movements, we will thus use the crossing law (IDc )
to model the task of entering a constrained area.

Models of Gesturing. Gestures, used, e.g., for marking men-
us [22], entering symbols via a recognizer [37], or shapewrit-
ing [44], are performed as a free-form stroke. The task result
depends mainly on the closeness between the input gesture
and the via-points or symbol templates. Thus, stroke vari-
ability is natural and accepted. In contrast, for lassoing the
main task requirement is to avoid the inclusions of unin-
tended objects, i.e., constraints external to the stroke. This
difference between a given or resultant variability affects the
choice of model. For example, the steering model is suitable
when a circular path has a limited tolerance width [2, 3], but
the minimum-jerk model is appropriate when users draw a
circle on an empty screen [36]. To accurately model lassoing,
we thus build on models for constrained tasks, i.e., steering,
Fitts’, and crossing models.

Criterion for Inclusion of Icons in a Lasso
There are several decision criteria for objects to be included
in a lasso stroke. The most common options are shown in
Figure 3. The visual difference between these criteria could
affect users’ perception and operation speed. Yet, regardless
of whichever criterion is used, participants get familiar with
a given criterion after sufficient practice. Therefore, we as-
sumed that the choice of lasso criterion would not strongly
affect our experimental result. Here, to eliminate ambiguity
for users, we match the visual appearance of the path to the
task requirement of a toleranceW (Figure 3d). This allows
participants to simply steer through white path areas, and
evaluating this lasso method yields the highest internal va-
lidity, due to the clearly defined tunnel. User performance
under Figure 3a–c can be recalculated by changing the task
parameter ofW .

3 EXPERIMENT 1: FULLY CONSTRAINED PATHS
In this experiment, the path was always fully constrained
in a grid layout of icons with margins (W ). We assume that
in such tasks continuous visual feedback is required to ac-
curately steer the pen-tip through the icons [35, 42], which



makes this a suitable test of how the task parameters affect
participants’ behaviors. The objective of this experiment was
to identify potential steering behavior changes depending
on the task conditions, such as the effect of path segment
length, for fully constrained lasso movements.

Participants and Apparatus
Twelve participants were recruited from a local university
(one female, M = 22.5 years, SD = 1.19). All had normal
or corrected-to-normal vision and were right-handed. Only
one participant used pen tablets daily for three years. Each
participant received 27 US$ for their time.
We used a Sony Vaio Z tablet PC (3.1 GHz i7-5557U; 16

GB; Windows 10). The display is 13.3”, 293.5 × 165.0 mm,
at 2560 × 1440 pixels, 0.115 mm/pixel, with 60 Hz refresh
rate. The system reads and processes input about 125 times
per second. The tablet was positioned flat on a table. The
default digitizer stylus pen of the tablet PC was used (13.9
cm; 20 g). The touch display rejected finger touches when the
pen-tip was on the surface and participants were informed
that their palm could touch the display. The experimental
system was implemented with Hot Soup Processor 3.4 and
used in full-screen mode.

Task
The task was to make a single, clockwise stroke, which in-
cludes only the orange icons, starting at the blue start area.
We required participants to cross the start of the stroke, as
shown in Figure 4. The current position of the penwas shown
with a cross-hair cursor. Participants were not allowed to
“touch” any icons, so the pen-tip could only pass through
white paths. If an icon was touched or the pen lifted up (in-
cluding low pen pressure or tilting the stylus too much), a
beep sounded and the trial had to be re-done. When the pen
tip crossed the stroke itself and all intended icons (only the
orange ones) were included in the loop, a bell sound was
played to signal success. Participants were asked to make a
stroke as quickly and accurately as possible.

Design and Procedure
Margin and Icon Size. We assume that, naturally, the total

distanceA that the cursor travels affects movement timeMT .
Based on previous work, including work on passing through
successive obstacle pairs [42], we also assume that the tunnel
widthW and icon size S affectMT . Hence, we variedW and
S , and thus the total distance A changed depending onW
and S . We tested two values ofW (5 and 8 mm, or 44 and 70
pixels, respectively) and two values of S (8 and 11 mm, or 70
and 96 pixels, respectively).

Icon Layout. Because the number of corners [29] and the
length of straight path segments [35] affect MT , we also

Figure 4: Lassoing operation in Experiment 1. The pen left
a trajectory in different colors: light blue in the start area,
red in the path, and green after crossing the stroke.MT and
steering errors were measured only for the core path (red).

Figure 5: Icon layouts used in Experiment 1.

wanted to analyze the effect of icon layout and thus path
shape. Therefore, we tested several layouts under the same
conditions on marginW and icon size S (and thus A), shown
in Figure 5. Initially, we experimented with more than 50
icon arrangement patterns but ultimately chose six specific
layouts with the same outer circumferential distance of 24
icons. The three pairs of layouts (A and B, C and D, and
E and F ) have the same numbers of corners (5, 7, and 9,
respectively), in different arrangements. This enabled us to
fairly analyze the effect of the number of corners and straight
segments onMT and to confirm that our model is accurate
for these conditions. With these stimuli, observing different
MT values can then be attributed to the layouts and their
properties, such as the numbers of corners and the length of
the straight segments where the user can reach themaximum
speed [31, 35].

In all the layouts, the orange icons had to be lassoed with
a single stroke; we did not investigate layouts that have iso-
lated “islands”. Such cases can be modeled through individual
models together with appropriate Fitts’ law terms [18]. Or-
ange icons were always arranged so that their bounding box
was located at the center of the display.

From the 24 total combinations (2S × 2W × 6 layouts), 10
conditions were randomly selected as practice trials. After
that, each participant performed 5 repetitions of the 24 con-
ditions (=120 trials). In total, across all 12 participants we
recorded 1,440 trials.



Figure 6: Movement times observed in Experiment 1.

We informed the participants that the system automati-
cally recorded the time from when the cursor left the blue
start area to when the cursor crossed the stroke trajectory.
Movement direction was always clockwise, hence we asked
participants to move rightwards after leaving the start area.
Because the whole experiment took about half an hour, we
let participants rest whenever they felt fatigue.

Results
We observed 253 retrials, of which 199 (11.8%) were steering
errors and 54 (3.2%) pen lifts. Due to the length of the path
and its complexity, it is not surprising that the steering error
rate was higher than in comparable work [41].
As in previous work [3, 39, 41, 43], we analyzed the MT

data of error-free (successful) trials using repeated-measures
ANOVA with a Bonferroni post-hoc test.

Movement Time. Figure 6 shows the results of MT . We
found significant main effects of the margin W (F1,11 =
123.444, p < 0.001, η2p = 0.918), icon size S (F1,11 = 85.792,
p < 0.001, η2p = 0.886), and layout (F5,55 = 12.625, p < 0.001,
η2p = 0.534). If we take the number of corners as a dependent
variable (i.e., merging the data of layout-A and -B, layout-C
and -D, and layout-E and -F ), we also identify a significant
main effect (F2,22 = 14.798, p < 0.001, η2p = 0.574).

Speed Measurement using Checkpoint Approach. To fairly
compare movement speed profiles between different lay-
outs, we define “check-points” as follows. For each midpoint
(crossroad) between two successive icons along the path, a
check-point perpendicular to the movement direction was
used for analysis, depicted as blue lines in Figure 7a. The
speed at each check-point is then calculated as the distance
from the previous check-point divided by the time spent for
the distance. Here, we assume that the cursor passes through
the tunnel on average along the center of the path. This is a
reasonable assumption, based on the derivation of the global
steering model (see Figure 3 by Drury [11] and Montazer and
Drury [26]). Themovement distance for each segment is then
(S +W ), except for the first check-point from the right edge
of the start area being 0.5W . That first check-point is crossed

Figure 7: (a) Check-points to measure the movement speed
in layout-B, and (b) the MT values predicted by the steering
and Fitts’ law for the first path segment in Experiment 1.

twice, thus the number of crossings is 25. Examples of speed
profiles in layout-A and layout-B are shown in Figure 8.

Model Derivation and Fitting. Here, we evaluate three mod-
els, as shown in Table 1. First, the global steering model
(Equation 2), which considers a lassoing task as a single
steering motion, with the only explanatory variable being
the IDs = A/W where A = 24S + 24.5W and with a single
steering intercept as :

MT = as + bs
24S + 24.5W

W
(5)

Second, we test the rewritten version of Pastel’s model, called
“Steering (segmented)” model (Equation 4), assuming that
users perform individual steering motion for each straight
path segment. Therefore, the numbers of steering intercept
(as ) for layout-A and B is 6, for C and D is 8, and for E and
F is 10. In the second row of Table 1, we use “#s” to show
the number of steering motions. The total steering difficulty
(IDs ) is the sum of difficulties for each straight path segment.
For example, in layout-B, the length of the first segment is
2S + 2.5W , and thus the steering difficulty in that segment
is (2S + 2.5W )/W . Similarly, the difficulty for the second
path segment is (1S + 1W )/W , and that for third segment
is (7S + 7W )/W , and so on. In this manner, the “Steering
(segmented)” model for layout-B is the sum of theMT values
of the six steering motions:

MT =

[
as + bs

2S + 2.5W
W

]
+

[
as + bs

1(S +W )
W

]
+

[
as + bs

7(S +W )
W

]
+

[
as + bs

2(S +W )
W

]
+

[
as + bs

9(S +W )
W

]
+

[
as + bs

3(S +W )
W

] (6)

In Table 1, we simply write this asMT = as (#s) + bs (IDs ).
Third, we test our newmodel, where a motion in a straight

path segment consists of both steering and pointing motions.
For example, in layout-B, the (straight) steering difficulties
are the same as Steering (segmented) model. Yet, as illus-
trated in Figure 7b, pointing to the first corner is modeled as
MT = ap + bp log2 ((2S + 2.5W )/W + 1). Then, the totalMT
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Figure 8: Speed profiles of layout-A and layout-B in Experiment 1. Green vertical lines indicate corners.

for the five pointing motions is:

MT =

[
ap + bp log2

(
2S + 2.5W

W
+ 1

)]
+

[
ap + bp log2

(
1(S +W )

W
+ 1

)]
+

[
ap + bp log2

(
7(S +W )

W
+ 1

)]
+

[
ap + bp log2

(
2(S +W )

W
+ 1

)]
+

[
ap + bp log2

(
9(S +W )

W
+ 1

)] (7)

Note that a pointing motion is not required for the final path
segment. Thus, the number of intercepts of pointing (#p) is
(#s − 1). In the third row of Table 1, we rewrite the sum of
MT s for six steering and five pointing motions as:

MT = as (#s) + bs (IDs ) + ap (#p) + bp (IDp ) (8)

Discussion of Experiment 1
Model Fitting. The fit of the global steering model was,

somewhat surprisingly, good, with adjusted R2 = 0.927. This
indicates a certain robustness of this steering model. A poten-
tial explanation is that participants did not perform the task
with ideal “stop-and-go” movements at corners [29]. Instead,
participants decelerated to a minimum of ∼40 mm/sec, see
Figure 8. Thus the global steering model can still capture a
reasonable part of the entire lassoing performance.

Yet, modeling a lasso motion as a sum of steering motions
for each straight path segment improved the fitness and
AIC values. Hence, if a lassoing task can be divided into
successive steering motions, it is better to separate them.
Yet, we also show that taking the pointing tasks at corners
into account significantly improves fitness, and our proposed
model achieved the best scores, with significantly betterAIC
[5]. As another check for the prediction error, we calculated
the SDs of the difference between the predicted and observed
movement times (MTpredicted−MTobserved) for theN = 24 data
points (AIC also uses these differences in its calculation). The
results are 203, 207, and respectively 129 msec, for the rows
of Table 1, which is another indication that we can estimate
theMT most accurately with our proposed model.

Speed Profile. The effect of the path width is clearly visible
in the speed profiles, see Figure 8. Overall, participants ac-
celerated in straight segments and decelerated in advance of
a corner. As expected, speeds at corners were lower to safely

“make” the curve and speeds in the middle of straight seg-
ments show peak values. Due to the lack of a final stopping
area, speed increased gradually at the trial end, as observed
in other steering studies [31, 41, 42].
In short segments the speed could not reach to the po-

tential maximum value, due to the path width [31, 34, 35].
Longer path segment showed a higher average movement
speed. For example, participants achieved a higher speed in
the longest bottom segment in layout-B than in layout-A (Fig-
ure 8). Another indication for the influence of long straight
segments is that the icon size S has a significant effect, as
with larger icons, straight segments are longer. This is visible
in Figure 8, where the yellow and orange lines (S = 11 mm)
are slightly higher than the gray and blue ones (S = 8 mm).

4 EXPERIMENT 2: PARTIALLY CONSTRAINED
PATH

The main objective of Experiment 2 was to explore the effect
of unconstrained segments on lassoing. Thus, we compared
both fully- and partially-constrained movements.

Participants and Apparatus
Twelve participants were recruited from a local university
(one female, M = 22.8 years, SD = 1.74). They had normal
or corrected-to-normal vision and were right-handed. One
participant used a direct input pen tablet for one year daily.
Three participants had participated in Experiment 1. Each
participant received 27 US$ for their time.

The same PC in Experiment 1 (Sony Vaio Z) was used. To
allow participants to accelerate more in large unconstrained
areas, we used a Wacom Cintiq 27" QHD pen & touch tablet
(2560 × 1440 pixels, 596.7 × 335.6 mm active input area, 0.233
mm/pixel; 12ms response time), and its refresh rate was set at
60 Hz. The system reads and processes input about 125 times
per second. The tablet was positioned on a table in “stand”
mode (at 20◦). Participants were informed that their palms
could touch the surface, as we had disabled touch sensing.
The digitizer pen was the default accessory of the tablet (24
cm; 19 g). The experimental system was implemented with
Hot Soup Processor 3.4 and used in full-screen mode.



Table 1: Model fitting results with 95% CIs [lower, upper] for Experiment 1. Higher adjusted R2 values are better,
while lower AICs are better. #s and #p indicate the numbers of steering and pointing motions, respectively.

Model Formulation as bs ap bp adj. R2 AIC

Steering (global model) MT = as + bs (IDs )
1428 75.7 0.927 333[858, 1997] [66.6, 84.9]

Steering (segmented) MT = as (#s) + bs (IDs )
115 83.8 0.953 330[71.1, 158] [78.1, 89.5]

Proposed MT = as (#s) + bs (IDs ) + ap (#p) + bs (IDp )
1360 50.8 -1729 210 0.949 311[863, 1857] [37.1, 64.5] [-2371, -1088] [106, 315]

Task and Icon Layout
The task was similar to Experiment 1. We reused some lay-
outs, but deleted parts of the grid to create unconstrained
regions. As shown in Figure 9, we reused layout-B, C, and
E. We attached a suffix of 1 to these fully-constrained condi-
tions, e.g., “layout-B1”, to indicate these as baseline layouts.
We tested two additional, partially unconstrained conditions
for each baseline condition as follows.
With layout-B2 and B3, we aimed to test the effect of the

length of an unconstrained segment in a lasso path. With
layout-C2 and C3, which both have an unconstrained path
along four icons, we wanted to test the effect of the pres-
ence/absence of a corner in unconstrained segments. If the
angle of the start of the following constrained segment (here,
90◦ and 0◦, respectively) affectsMT , this would indicate that
models need to take this factor into account.
The layout-E2 includes two unconstrained regions, but

the pen movement direction has to change quickly in these
regions. Therefore, we assumed that the accelerations in
these unconstrained areas were limited, and the there would
be less of a difference with layout-E1. In layout-E3, a large
curved stroke is needed to maintain a high speed in the
unconstrained area. Therefore, we assumed that the total
travel distance would increase, compared with layout-E1 and
E2, but that the pen speed would be higher.

A major goal of this experiment was to observe the differ-
ences in cursor trajectories and speeds, and to test whether
a single model showed a good fit regardless of the differ-
ent conditions. Although the ballistic movement speed in
unconstrained area can differ depending on the movement di-
rection [14, 34], the effect of direction would be small relative
to other ones, such as the unconstrained distance.

Design, Procedure, and Instruction
The total number of parameter combinations was 36 (2S ×
2W × 9 layouts). 10 conditions were randomly selected as
practice trials. After that, participant performed 3 repetitions
of the 36 conditions, thus 108 actual trial. In total, for all 12

Figure 9: Icon layouts used in Experiment 2.

participants we recorded 1,296 data points forMT and errors.
This study took 20 to 30 min per participant.

Because we observed a high error rate in Experiment 1,
we used largerW values (7 and 11 mm, or 30 and 47 pixels,
respectively). We also chose to include longer straight seg-
ments (S = 15 and 20 mm, or 64 and 86 pixels, respectively).
Initially, we assumed that these largerW values would be
enough to lower the error rate, e.g., to <10%. However, we
observed very high steering error rates of 34% and 47% for
two participants in a pilot. Therefore, we decided to instruct
the participants to “move quickly as long as you do not touch
icons”, which emphasized accuracy over speed. Such an in-
struction is also common for error-prone tasks, e.g., in Accot
and Zhai’s experiment [2]. We did not use even largerW val-
ues, because lassoing movements in such conditions would
be more ballistic and not require precise pen operation.

Results
We observed 96 retrials, where 82 (=6.3%) were steering er-
rors and 14 pen lift errors (=1.1%).

Movement Time. We found a significant main effects of
the marginW (F1,11 = 760.61, p < 0.001, η2p = 0.874), icon
size S (F1,11 = 243.38, p < 0.001, η2p = 0.954), and layout
(F5,55 = 49.994, p < 0.001, η2p = 0.820), as shown in Figure 10.

Cursor Trajectory. To compare the participants’ behaviors
with the different layouts, we overlaid successful trials for



Figure 10: Movement times in Experiment 2. Significant dif-
ferences between each layout group of (B1, B2, B3), (C1, C2,
C3), and (E1, E2, E3), are annotated to compare behaviors
with unconstrained segments among these groups.

B1 B2 B3

C1 C2 C3

E1 E2 E3

Figure 11: Overlaid cursor trajectories of all successful trials
forW = 7 mm and S = 15 mm in layout-B1, B2, and B3. 48
strokes per image.

Figure 12: Checkpoints for speed calculation in Exp. 2.

the exemplary condition ofW = 7 mm and S = 15 mm in
layout-B1, B2, and B3 (Figure 11). These images clearly show
that participants made more sloppy, curved strokes in longer
unconstrained areas.

Speed Profile. Weagain use the same “check-point”method
used in Experiment 1 to compare movement speeds. In Exper-
iment 2, as shown in Figure 11, strokes tended to use a more
“roundabout”way in unconstrained areas. Thus, check-points
in unconstrained areas need to have semi-infinite lengths
(Figure 12). The speed at each check-point is calculated with
the same method: S +W divided by the time spent for the
distance. Specifically in unconstrained areas, actual paths are
often longer than (S+W ) due to roundabout movements. Yet,
such fast but long movement do not contribute to progress
the lasso task. Thus, regardless of the stroke shape, we de-
fine (S +W ) as the movement distance for a single segment.
The profiles in Figure 13 fairly compare the speeds between
check-points within the same layout group.

Model Derivation and Fitting. We again evaluated different
models, see Table 2. The path tolerance for unconstrained
areas is in essence infinite. For such situations, the global
steering model predicts an IDs of zero. Lank and Sound pro-
posed to limitW via the instantaneous stroke speed observed
in unconstrained areas (Equation 10 in [23]). In contrast, our
work aims to derive a predictive model that can estimateMT
based (only) on the given icon geometry.

For example, in layout-B3, there are 24 outer icons, but nine
of them are along the bottom unconstrained area. Thus, the
steering difficulty for the bottom unconstrained area is zero,
and the IDs for the global and segmented steering models is
(15S + 15.5W )/W . Similarly, because there needs no steering
motion in the bottom unconstrained area, the number of
steering motion (#s) in layout-B3 is 5. In this manner, we
obtain the Steering (global) and Steering (segmented) models
(first and second rows in Table 2, respectively). Yet, as the
speed in unconstrained areas is not actually infinite [28],
even whenW = ∞, these two models do not show good fits.
Thus, the global steering model cannot predict the task in
Experiment 2 well.
Thus, similar to Experiment 1, we evaluate the fitness of

a model of segmented steering with pointing (third row),
to check the effectiveness of adding pointing motions for
corners via IDp . In layout-B3, exiting the fourth path seg-
ment from constrained to unconstrained areas and entering
the final path segment from the unconstrained area need
no pointing motions, in addition to the final path segment.
Hence, the number of pointing motions (#p) is only 3.
We also evaluate the Steering (segmented) model with a

crossing difficulty for transitions from an unconstrained area
to a constrained one (fourth row). Although crossing mo-
tions for amplitude and directional constraints have slightly
different constants (ac and bc ) [4, 6], we approximate them
through a single parameter. In layout-B3, entering the final
segment from the bottom unconstrained area is modeled as:

MT = ac + bc log2

(
9(S +W )

W
+ 1

)
(9)

For the crossing motion in layout-C2, depicted in Fig-
ure 14a, we refer to Hoffmann and Sheikh’s work on point-
ing with obstacle avoidance [19]. They found that the MT
for pointing at a target (closed-loop operation) after avoid-
ing an obstacle (ballistic operation), which requires an ad-
ditional vertical (height) movement, can be modeled by a
Fitts’ law term that uses the sum of each movement distance,
see Figure 14b. Users performed the obstacle avoidance and
homing-in movements as a single sweeping motion. Their
work uses the original Fitts’ law formulationMT = a + bID
with ID = log2((2(H + A)/W ). We adopt this result to a
crossing motion for layout-C2. The movement distance is,
as shown by the blue line in Figure 14c, 4(S +W ). Note that
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Figure 13: Speed profiles in Experiment 2. Green vertical lines indicate corners, and unconstrained areas are shaded in blue.

Figure 14: Roundabout movement in layout-C2.

this crossing motion does not involve steering between the
top orange icons and bottom green ones (Figure 14c), as the
ratio of the path distance to the width is 3, which does not
require closed-loop steering [34].

Lastly, we evaluated our proposed model, which sums the
difficulties of segmented steering, pointing, and crossing mo-
tions (last row in Table 2). The pointing and crossing terms
significantly improve model fitness, and it is thus possible
to accurately estimate the time for an entire lasso motion.

Discussion of Experiment 2
Model Fitting. In contrast to Experiment 1, the segmented

version of the global steering model did not improved the
model fitness much over the baseline model. Interestingly,
adding terms for either pointing or crossing motions showed
significant improvements, which expands on Experiment 1
where only pointing motions helped. Finally, our new model
showed a significantly better fit, according to the AIC [5].
The SDs of the deviations (MTpredicted −MTobserved) for the
N = 36 data points are 657, 600, 352, 324, and 225 msec for
the rows of Table 2, respectively. Similar to Experiment 1,
our model again predicts MT more accurately. Thus, our
new model enables designers to predict how long a given
lasso motion may take, regardless if the targets are fully or
partially constrained by other objects.

Speed Profile and Cursor Trajectory. As expected, partici-
pants made curved “roundabout” strokes in unconstrained
areas (Figure 11). These sloppy movements allowed partici-
pants to move the stylus more quickly, and speed increased
more in long unconstrained areas. This is visible in the areas
highlighted in blue in Figure 13. In addition, we identified
another property of unconstrained areas; as annotated by

the red rectangle for layout-B2 in Figure 13, participants did
not have to decelerate in advance of the unconstrained area.
Thus, they could keep the speed high until exiting the third
constrained segment. In comparison, in the fully-constrained
condition (layout-B1), participants had to decelerate in ad-
vance of the third corner, and hence the speed did not reach
the maximum possible for the given path width.

In interviews after the experiment, 7 out of 12 participants
stated that they were able to accelerate in unconstrained ar-
eas. One of them emphasized that they experienced this even
when the unconstrained area was only for a single icon (the
second unconstrained area in layout-E2). In contrast, 2 out
of 12 participants identified a disadvantage of unconstrained
areas: when coming from an unconstrained area and entered
a constrained segment, they could not decrease the speed
and accidentally hit an icon, because they did not control
the speed well enough for the constrained path widthW .

5 GENERALIZATIONS OF THE MODEL
In this work we focused mainly on model fitting for different
icon layouts that include constrained and unconstrained
areas. Our results are somewhat limited by the experimental
conditions, e.g., we tested only two values of marginW and
icon size S for grid arrangements. Yet, we expect that our
results generalize to a larger range of characteristics, as long
as the steering, pointing, and crossing laws hold. Also, in both
experiments, we tested only clockwise strokes performed by
right-handed participants, to control any potentially negative
effect of hand occlusion. Moreover, as users naturally slow
down if they cannot see the path ahead, we also expect that
users naturally avoid occlusions to make their task easier.

Nancel and Land carefully avoided hand occlusions when
developing a single curved path for steering tasks [28]. Yet,
a lassoing task requires a loop. Thus, this problem cannot be
completely ignored. To increase internal validity, we fixed the
start position at the top-left of the orange icons. Yet, in actual
lassoing tasks users can determine where to start lassoing,
which could affect performance. Also, automatically closing
the stroke makes lassoing easier. We believe that our work
directly generalizes to such functionality, as it is trivial to
exclude the last term for “closing the loop”. Still, auto-closing



Table 2: Model fitting results with 95% CIs [lower, upper] for Experiment 2. #s, #p, and #c indicate the numbers of
steering, pointing, and crossing motions, respectively.

Model Formulation as bs ap bp ac bc adj. R2 AIC

Steering (global) MT = as + bs (IDs )
2522 77.0 0.755 577[1524, 3520] [61.7, 92.3]

Steering (segmented) MT = as (#s) + bs (IDs )
326 79.5 0.795 569[219, 434] [67.5, 91.5]

Steering (segmented)
MT = as (#s) + bs (IDs ) + ap (#p) + bp (IDp )

943 54.0 -1560 341 0.930 534with pointing [767, 1118] [42.7, 65.3] [-2001, -1120] [216, 466]
Steering (segmented)

MT = as (#s) + bs (IDs ) + ac (#c) + bc (IDc )
273 78.4 -795 413 0.940 529with crossing [209, 337] [71.7, 85.2] [-1229, -361] [287, 540]

Proposed MT = as (#s) + bs (IDs ) + ap (#p) + bp (IDp ) -102 68.8 -95.6 201 -139 401 0.971 506
+ac (#c) + bc (IDc ) [-817, 613] [57.9, 79.8] [-1004, 813] [103, 298] [-766, 488] [271, 531]

Figure 15: Lassoing situations not investigated in this work.
See text for details.

introduces strategic issues. For example, in Figure 15a, the
distances A-B and B-C are the same, but passing through
A-B is slower. Therefore it seems that auto-closing the loop
at A-B is better. However, the most effective path to be auto-
connected is likely C-D, because successive obstacles further
decrease the steering speed compared to a fully-constrained
area [42]. A topic of further research is thus to identify how
users determine the lasso start and end positions.

Other untested icon layouts which possibly affect theMT
are shown in Figure 15b–d. In (b), and compared with the
fully-constrained condition (layout-A used in Experiment 1),
the unconstrained area allows a “cut-off” motion. Although
we did not include such a layout in our experiments, we
believe that theMT for this unconstrained area can be accu-
rately modeled as a crossing motion with A of its diagonal
distance. Comparing (c) and (d), the green icons at the bot-
tom left in (d) objectively should not affect user performance
(unless users intentionally overshoot). One could argue that
users might perceive a different task difficulty and change
their behavior. Yet, as we observed very little overshooting,
see the movement trails in Figure 11, we believe this to be a
minor issue that does not affect our model substantially.

Limitations and Future Work
As that we tested only two values ofW and S , and we inves-
tigated only a single lasso criterion (Figure 3d), our study is
limited by the experimental conditions. Another limitation

is that we explored only lassoing of icons in regular and
orthogonally arranged grids; thus we cannot claim that our
current model can be applied to all lassoing tasks. While such
grids are commonplace in file and photo management appli-
cations, other applications involve situations with irregular
sized, shaped, and positioned objects.

Still, we assume that our lasso path segmentation approach
might generalize to such tasks by integrating additional
factors, e.g., path curvature [27, 28], width-changing paths
[39, 40], and successive path segments [41, 42]. As our above
work shows that a summation of task-dependent terms corre-
sponding to each path segment is a good approach to predict
movement time, we expect this approach to generalize to
such, more complex, tasks as well. To achieve our long-term
goal of modeling general lasso tasks, we plan to explore such
extensions in future work through a series of experiments
that enables us to verify the utility of each individual factor.

6 CONCLUSION
We derived models to predict movement times for lassoing
tasks under both fully- and partially-constrained conditions.
Results showed that summing indices of difficulty for steer-
ing, pointing (stopping at a corner), and crossing (entering
a constrained area from unconstrained area) movements
can accurately capture user performance and yields signif-
icantly better results than other approaches. The margin
between icons, icon size, and icon layout (naturally) signif-
icantly affected movement time. Beyond that, we showed
that careful segmentation of the path into different tasks and
summing corresponding model terms accurately estimates a
whole lasso motion. We also discussed how our work can be
generalized to several conditions we did not experimentally
evaluate here. In the future, we plan to further generalize
our work towards lassoing with more irregular objects and
arrangements.
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